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Short Title: Isolated Late Neanderthals from Europe 

 

Summary: Neanderthal genomes have been recovered from sites across Eurasia, painting an 
increasingly complex picture of their populations’ structure, mostly indicating that late European 
Neanderthals belonged to a single metapopulation with no significant evidence of deep 
population structure. Here we report the discovery of a late Neanderthal individual, nicknamed 
“Thorin”, from Grotte Mandrin in Mediterranean France, and his genome. These dentognathic 
fossils, including a rare example of distomolars, are associated with a rich archeological record 
of their final technological traditions in this region ~50-42 thousand years ago. Thorin’s genome 
reveals a deep divergence with other late Neanderthals. Thorin belonged to a population with 
small group size that showed no genetic introgression with other known late European 
Neanderthals, revealing genetic isolation of his lineage despite them living in neighboring 
regions. These results have important implications for resolving competing hypotheses about 
causes of the Neanderthals’ disappearance. 

 

One Sentence Summary: A new French Neanderthal fossil and its genome reveal complex 
population dynamics during the past 100,000 years. 

 

Keywords: Neanderthals, Europe, Fossils, Genomics, Population Structure, Proteomics 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 10, 2023. ; https://doi.org/10.1101/2023.04.10.536015doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.10.536015


Submitted Manuscript 

3 
 

 

 

 

Main Text: 

Introduction 

The reasons behind the extinction of the Neanderthals ~40 thousand years ago (ka) are still 

widely debated. Multiple theories have been presented over the years, including competition or 

interbreeding with modern humans, but it remains unknown if the factors involved in this 

process were primarily ecological or social and then based on the historical inter-relations 

between these populations1,2,3. Some researchers suggest that social, technical, or ethological 

differences between Neanderthals and modern humans may have played a direct role in their 

demise but the precise cause(s) of such extinction remains uncertain1-7. Paleogenomic and 

osteological studies have revealed low effective population sizes and signatures of inbreeding in 

Siberian and late European Neanderthals6,8, suggesting social structure characterized by small 

group sizes and low intergroup mobility. This contrasts with recent results from early Eurasian 

modern humans, which showed low levels of inbreeding and higher intergroup mobility despite 

small group sizes9,10. Whether these results are representative of wider Neanderthal social 

organization remains inconclusive. 

 

Since the publication of the first draft of the Neanderthal genome in 201011, Neanderthal 

genomes have been recovered from sites across Eurasia, painting an increasingly complex 

picture of Neanderthal genetic structure. The deepest divergence among Neanderthal genomes 

sequenced to date is found between eastern and western Eurasian Neanderthal populations 

represented by the ~120 ka Altai Neanderthal from Denisova Cave7 and the >44 ka Vindija 33.19 

individual from Croatia12. Genomic data of all other available Neanderthal remains, the earliest 

in western Europe being ~120 ka (Scladina and Hohlenstein-Stadel (HST)), while the latest 

being ~40 ka, suggest genetic continuity in western Eurasia for ~80 ka13. Recent results obtained 

from sedimentary DNA suggest that the genetic landscape was significantly altered by 

expansions of Neanderthal populations ~105 ka14. This gave rise to lineages in western Europe 

represented by samples from Central Europe (Vindija), the Caucasus (Mezmaiskaya Cave), and 

Siberia (Chagyrskaya cave 8)15, the latter likely replacing the earlier Altai-like population. The 
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genomes of late (<50 ka) European Neanderthals, including an individual from the Caucasus 

(Mezmaiskaya 2), were all found to be more similar to Vindija than to other known lineages, 

indicating further population turnover towards the last stages of Neanderthal history in the 

Caucasus or western Europe16. The close correlation between genetic similarities and geographic 

location suggested an absence of major population structure among the sampled late Neanderthal 

populations. It remains unknown whether these patterns result from long-term in situ evolution 

of late European Neanderthal populations, or as a consequence of a recent expansion of Vindija-

like lineages into Europe. 

Here we report the discovery of a late Neanderthal individual, nicknamed “Thorin”, in 2015 and 

progressively excavated since then at Grotte Mandrin in Mediterranean France, a site which also 

was temporarily occupied by early modern humans at 54 ka1. Thorin is one of the best 

represented Neanderthal individuals found in France since the discovery from Saint-Césaire in 

197917. Combining archaeological, chronostratigraphic, isotopic, and genomic analyses, we show 

that Thorin belonged to a late Neanderthal population which had stayed genetically isolated for 

some 50 ka. We further find evidence of gene flow from a deeply divergent lineage distinct from 

the Thorin lineage in the Neanderthal individual from Les Cottés16. Our results suggest the 

presence of multiple isolated late Neanderthal communities in Europe close to their time of 

extinction, and shed light on their social organization with limited, if any, level of interactions in 

between different Neanderthal populations in their last millennia. 

Results 

Thorin is a late European Neandertal 

Grotte Mandrin is a rockshelter located in Mediterranean France directly overhanging the Rhône 

River Valley. The site records 12 main sedimentary layers dating from Marine Isotope Stages 

(MIS) 5 to 3. Geological and micromorphological analyses show that all archeological levels 

were well preserved by rapid wind deposition of sands and silts1. The upper sequence is divided 

into 8 archeological levels chronologically placed between 65.6 to 31.0 ka at 95% CI, 

encompassing the last Neanderthal societies and the arrival of the first modern human groups. 

Each of these levels provide rich archeological records, totalling more than 60,000 lithics and 

70,000 faunal remains. Fireplaces and hominin remains were also found in most of Mandrin’s 
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levels1. These 8 archeological levels were divided in 5 cultural phases: Level F: Rhodanian 

Quina, Level E: Neronian, Level D: Post-Neronian I (PNI), Levels C2 to B2 Post-Neronian II 

(PNII), Level B1: Protoaurignacian. The cultural determinations of the Neronian, PNI, and PNII 

phases at Mandrin1 show major technical and cultural divergences with the coeval Mousterian 

and Châtelperronian societies4 found in the neighboring regions of south-western France and 

Burgundy3,5,18,19. 

Thorin was discovered in 2015 at the entrance of the rockshelter in lateral contact between the 

upper layers and the bedrock in Level B2 (Fig. 1) associated with abundant fauna and artifacts 

attributed to the PNII, the last Mousterian phase from Grotte Mandrin1,3,5,18,19. Thorin is 

represented by several fragments, including a portion of the left palatal process at the level of the 

molars, a fragmentary mandible, as well as 31 permanent maxillary and mandibular teeth (Fig. 

2). While the upper right premolars and the upper left canine were lost post-mortem, it is 

noteworthy that two supernumerary lower molars are present (fourth molars). They are 

heteromorphic and exhibit a reduced and simplified (non-conical) crown with a single but large 

root from the cervix to the apex. The marked inclined wear facet affecting the occluso-mesial 

crown aspect of these two teeth fits with the distal interproximal facet of the lower third molars, 

indicating that the distomolars impacted the third molar crowns during the eruption process. 

Overall, the dental morphology of this individual is typical of Neanderthals, with shovel-shaped 

maxillary central incisors, marked labial convexity on the maxillary lateral incisors that also 

show a large tuberculum dentale on the lingual aspect of the crown, a well-developed hypocone 

projected lingually in the maxillary molars, and high root stem/branches ratio (i.e., 

taurodontism20,21; Fig. S1). Most of the dentition shows advanced occlusal wear associated with 

hypercementosis at the root apex, notably on the anterior teeth, and the fully developed third  

fourth molars indicate that it is an adult individual. The advanced occlusal wear is also associated 

with hypercementosis and exostoses on the maxilla, indicating that the teeth and jaw were under 

heavy (para)masticatory stress during the life of this individual.  Near these cranial elements, the 

remains of five adult phalanges of the left hand were found (Fig. S2). They showed typical 

Neanderthal features: ulnar deviation of the pollical distal phalanx and expansion of the distal 

phalangeal tuberosity22,23. All of the human remains recovered so far are of adult age and the 

anatomical representation of the different elements is compatible with the presence of a single 

individual. While the teeth show typical Neanderthal features, the presence of two 
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supernumerary fourth molars is remarkable. Mandibular distomolars are extremely rare in extant 

humans (around 0.02%)24 and, to the best of our knowledge, have not been reported in 

Pleistocene Homo so far, though other kinds of supernumerary teeth have been described in a 

few instances for Neanderthal and Paleolithic modern humans25-28. The aetiology of the presence 

of distomolars is still debated24. Studies of odontoskeletal anomalies found in early-generation 

hybrids of living primates display a relatively high incidence of distomolars29,30. 

Recent analyses of Paleolithic sites in Western Europe suggest that Mousterian lithic industries, 

traditionally attributed exclusively to Neanderthals, ended 39-41 ka cal. BP4. Throughout 

Eurasia, ten sites have yielded Neanderthal remains directly dated between 50 and 40 ka cal. 

BP16,31-39, while only the four French sites, Arcy, Les Cottés, La Ferrassie, and Saint-Césaire, 

underwent ultrafiltration and provided ages between 45 and 40 ka cal. BP16,36,38,39. Neanderthal 

remains safely attributed to the final stage of their long existence are thus particularly rare and 

come essentially from sites excavated decades ago16,31-39, often with little or disputable 

stratigraphic and archeological context. 

In order to provide a wider range of less-precious specimens for the destructive process of 

radiocarbon dating, we screened 80 fragmentary bone remains suspected as deriving from Thorin 

by Zooarchaeology by Mass Spectrometry (ZooMS) collagen peptide mass fingerprinting40,41 

following the methods outlined in ref. 42. Specimens that yielded spectra matching a Hominidae 

signature43 were radiocarbon dated at the Oxford Radiocarbon Accelerator Unit. Hydroxyproline 

was extracted for AMS dating to ensure reliability and contamination removal44. A selection of 

hominin remains were also further explored by paleoproteomic sequencing and its ability to 

distinguish archaic from modern hominin taxa38, but comparison with known modern human 

remains from Holocene deposits proved this approach to be problematic (Supplementary 

Material 5). 

Direct U-series dating and combined U-series – electron spin resonance (US-ESR) dating of 

Thorin was also undertaken on a fragment of the Neanderthal’s lower left third premolar crown. 

Additional faunal remains from Level B2 were directly dated using the same approaches. 

Uranium diffusion and accumulation patterns in the dentine and enamel were obtained prior to 

the isotopic analysis. According to the diffusion model and the U-series age distribution in the 

fossils, a minimum age of 43.5±4.1 ka can be assigned to the Neanderthal remains from Level 
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B2. US-ESR modeling yields statistically indistinguishable finite ages of 48 +5/-13 ka and 49 

+5/-10 ka for Thorin and the Level B2 fauna, respectively. 

We undertook Bayesian modeling of the broader stratigraphic sequence at Mandrin to determine 

a robust age estimate for Thorin within the PNII levels (C2-B2). The model yielded an age range 

for Thorin of 51,300-48,900 cal. BP (at 68.2% prob.) and 52,900 - 48,050 cal. BP (95.4% prob.; 

Fig. 3; see Materials and Methods). 

The carbon, nitrogen, oxygen and strontium isotopic ratios measured on one of the Thorin teeth 

are fully compatible with an individual living in an open landscape and cold climatic conditions, 

consistent with the sedimentary characteristics of the C2-B2 deposits and direct dating results, 

rather than forested and temperate conditions as would have been the case during MIS 5 (Fig. 

S3; Methods). 

 

Thorin represents a distinct Neanderthal lineage 

A first molar root fragment was used to generate a whole genome sequence from Thorin by 

performing three sequential DNA extractions (E1, E2 and E3), drastically reducing modern 

human contamination (Table S9, S10), as well as whole-genome in-solution capture to increase 

the fraction of endogenous human DNA. Libraries built on raw (non-USER treated) DNA 

extracts exhibited elevated terminal C>T / G>A substitution rates consistent with authentic 

ancient DNA data (Figs. S4-S9, Tables S8-S9). However, analyses of contamination rates using 

mitochondrial DNA and X-chromosome data and grade-of-membership models on the nuclear 

DNA revealed substantial levels of modern human DNA contamination in the data generated 

from the first extract E1 (mtDNA-based estimate 13-60%, Table S9; X-based estimate 13-29%, 

Table S10). We therefore restricted all subsequent analyses to data from extracts E2 and E3, 

which show re-estimated mtDNA and nuclear contamination rates of <1% and 0.01%, 

respectively, yielding a final average depth of coverage of 1.3X of the nuclear genome and 561X 

for the mtDNA.  

We rule out the potential of reference and capture bias in our data with D statistics from which 

we in both cases obtain non-significant D-values (Figs. S17). 
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Molecular sex determination using reads mapped to the X and Y chromosome showed that the 

Thorin individual was male. Phylogenetic analyses of the mitochondrial (MT) genome revealed 

that the Thorin MT genome was most closely related to that of the FQ individual from Gibraltar. 

Both of them form part of a clade including other recently described European Neanderthal 

samples (Stajnia Cave, Poland; Galeria de las Estatuas, Spain) and the ~65 ka Mezmaiskaya 1 

individual from the Caucasus, distinct from other late Western Eurasian Neanderthals sequenced 

to date (Figs. 4A & S10). Analyses of the Y chromosome showed a similar result, with the 

Thorin sequence diverging prior to the other two male late Neanderthals (Spy94a, Mezmaiskaya 

2), albeit with limited bootstrap support (Figs. 4B & S11).  

Using BEAST245 we obtained a molecular age estimate of ~100 ka (Table S12, Figs. S12-S13) 

for Thorin, some ~50 ka older than the 14C, U-series, and OSL ages obtained from the sediment 

layer from which Thorin was excavated. Similar discrepancies in ages have previously been 

observed for Chagyrskaya 815 and Stajnia S500046. Notably, directly dated samples used for tip 

calibration are restricted to the clade of late Neanderthals (Fig. 4A, Table S11) and cover only a 

shallow part of the entire tree, possibly leading to inaccurate estimates if substitution rates vary 

across the phylogeny47. In order to test this, we carried out an additional BEAST2 analysis 

including Thorin as an additional calibration point using an age of 50 ka (95% CI: 45– 55 ka), 

allowing for variation in substitution rates along the tree. The resulting tip ages for Chagyrskaya 

8 (70 ka; 95% CI: 48–94 ka ) and Stajnia S5000 (77 ka; 95% CI: 53–103 ka), were found to be 

substantially closer to ages obtained from their respective archaeological contexts (~60 and ~50 

ka). Similarly, the molecular age estimate of Mezmaiskaya 1 of ~74 ka also aligned with its 

previous estimate of 60-70 ka48 (Table S12, Figs. S12-S13). The estimated substitution rates 

remained within a relatively narrow range, suggesting that the initial molecular ages for samples 

in the Thorin MT clade were likely overestimated. Under this model we estimate a divergence 

time of the Thorin clade of 123 ka, while we estimate the divergence between Hohlenstein-

Stadel and the rest of the Neanderthals to 215 ka and the split between modern humans and all 

Neanderthals to ~330 ka (Figs. S12-S13).  

We investigated broad population structure among the low coverage Neanderthals and 

Chagyrskaya 8 by projecting them onto a principal component analysis (PCA) of Vindija 33.19, 

Altai Neanderthal and Denisova 3, the three deepest diverged archaic lineages with high quality 

genomes currently available. The projected individuals formed a cline towards Vindija 33.19, 
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consistent with their previously reported sharing of a more recent common ancestor than with the 

Altai Neanderthal (Fig. S14). Interestingly, the placement of Thorin fell within the cline but 

further from Vindija 33.19 than any other late Neanderthal individual, suggesting a more distant 

relationship to Vindija 33.19. D-statistics confirmed that Neanderthals from Europe, the 

Caucasus, and Siberia younger than 80 ka shared significantly more alleles with Vindija 33.19 

than with Thorin, and that the Thorin lineage forms an outgroup to those lineages (Figs. 5 & 

S15-S19). The exception was the Neanderthal sample FQ from Gibraltar49, which showed a 

weak but significant signal of excess allele sharing with Thorin, consistent with their closely 

related MT sequences (Figs. 6 & S15-S19). Furthermore, Thorin does not show excess allele 

sharing with modern humans in comparison to all other west Eurasian Neanderthals, indicating 

that the lineage interbreeding with modern humans diverged prior to the Thorin lineage, and 

ruling out the possibility of recent interbreeding with early modern humans at Mandrin cave1 

(Fig. S17). 

We carried out demographic modeling using the site-frequency-spectrum based approach 

implemented in momi250, which allows the placement of low coverage individuals onto a 

scaffold inferred from high quality genomes. We first fit a scaffold demography including the 

three high coverage Neanderthals (Altai Neanderthal, Chagyrskaya 8, Vindija 33.19) as well as 

the Denisovan, incorporating previously inferred demographic events8. The low coverage 

samples Thorin and Mezmaiskaya 1 were then added to this scaffold, allowing for a divergence 

from the Vindija 33.19 lineage at any point after the split from the Altai Neanderthal. The best-fit 

model indicates a divergence of the Thorin lineage from Vindija 33.19 at 102,861 years ago 

(95% CI 100,267 - 105,169), considerably earlier than those of Mezmaiskaya 1 (82,617 ya; 95% 

CI 79,313 - 85,606) or Chagyrskaya 8 (79,458 ya; 95% CI 77,600 - 80,892; Fig. 6), and 

consistent with results from D-statistics and mtDNA.  

Using a novel approach to detect runs of homozygosity in low coverage Neanderthal genomes, 

we found evidence for increased homozygosity in the Thorin genome compared to other late 

European Neanderthals. Thorin harbors ~7% of its genome in homozygous segments of 5Mb or 

longer, including 45 Mb (~1.5%) in segments longer than 20Mb indicative of recent inbreeding 

(Figure 7). Taken together, our results suggest small group sizes and long-term genetic isolation 

of the Thorin population from other late Neanderthal populations with genomic data available.  
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Other isolated lineages present 50 ka? 

We further investigated the possibility of population turnover in Europe during the late 

Neanderthal period. Using D-statistics testing whether the late Caucasus lineage of Mezmaiskaya 

2 forms an outgroup to other late European Neanderthals, we find evidence of gene flow with a 

“deep” Neanderthal lineage in the ~43 ka Les Cottés Z4-1514 sample from France (Fig. S18). 

Interestingly, this individual carries a mtDNA lineage most closely related to the Siberian 

Neanderthals from Okladnikov and Chagyrskaya caves, diverging earlier than the clade of 

Vindija-like late Neanderthals sampled to date (Fig. 4). Demographic modeling of Les Cottés 

Z4-1514 and Mezmaiskaya 2 onto the previous best-fitting model revealed that a model with 

gene flow into Les Cottés Z4-1514 from an unsampled ghost lineage diverging ~89 ka provided 

a significantly better fit than one without gene flow (Fig. S24). An alternative model involving a 

ghost lineage constrained to diverging from the Thorin lineage also yielded a poorer fit, with a 

divergence time of the ghost lineage close to the diverging of the Thorin lineage (Fig. S24). Our 

results thus suggest the presence of at least two deeply divergent and isolated lineages in close 

geographic proximity during the late Neanderthal period, subsequently partially replaced by an 

expansion of Vindija-like lineages into western Europe within the last 10,000 years of their 

existence. Interestingly, the eastern European late Neanderthal from Mezmaiskaya cave 

(Mezmaiskaya 2) also shows high levels of homozygosity (Figure 7) , suggesting small group 

sizes were likely also common among late Neanderthals outside the expanding Vindija-like 

population.  

 

Discussion 

Thorin is the most complete Neanderthal individual found in France since 197917 and falls 

amongst a group of other Neanderthals dating to the last millennia of their existence in western 

Europe. So far population genetic analysis of other late Neanderthals has indicated they belonged 

to a single metapopulation with no significant evidence of deep population structure among 

them16. The genome of Thorin sheds new light on the population structure of late Neanderthals 

as our genomic analyses demonstrate that Thorin belongs to a deeply diverging European 

Neanderthal lineage, representing a remnant of earlier European Neanderthals. Interestingly, the 

divergence of this lineage began at ~100-105 ka, during the MIS 5 interglacial, a period that saw 
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fast climatic and environmental changes across Eurasia and repopulation by warm adapted fauna 

through the continent51,52. The timing of this divergence also coincides with a period of 

population replacement detected in northern Spain among Neanderthal populations14. 

Our analysis testing for gene flow between Thorin’s lineage and other known Neanderthal and 

modern human lineages suggests the existence of an isolated group of late Neanderthals in 

western Europe 50 ka. This population is associated with a distinctive PNII lithic tradition1, 

which is continuously attested in the last four Mousterian levels of Mandrin (Levels C2 to B2), 

from 52.9-43.0 ka at 95% CI, overlapping with the final disappearance of Neanderthal 

populations in Eurasia1,4. Thorin therefore likely belonged to one of the last representative 

Neanderthal populations in this area of Mediterranean France, and poses the first direct genomic 

evidence of deep population structure among late European Neanderthals. The genetic 

relationship observed between Thorin and FQ (also indicated in demographic modeling, 

Supplementary Note 4) indicates that the Gibraltar Neanderthals might have been members of an 

extended southwest European metapopulation, and raises the possibility of a much later dating 

for those individuals than previously anticipated49. However, due to sparsity of data from FQ, we 

are unable to draw further conclusions hereof.  

The genetic differences between Thorin and the other Western European Neanderthals may 

signify a major process of population replacement following, or related to, the expansion of 

anatomically modern humans through Europe. Interestingly, Thorin corresponds to the phase of 

Neanderthal reoccupation of Grotte Mandrin after the earliest modern human incursions in 

Europe1,2. The millennia-long genetic isolation of the Thorin-lineage raises new questions of 

relevance to the Neanderthal extinction debate and the types of interactions between the last 

Neanderthals and early H. sapiens in Europe. Additional DNA analyses and secure direct dating 

of late Neanderthal remains are now crucial to understand whether this population was only 

locally spread -in the middle Rhône Valley- or if the Thorin lineage was more widely distributed 

across Europe, as suggested by the Gibraltar connections. The sedimentary autosomal DNA data 

from the Galeria de las Estatuas population was unfortunately not of sufficient coverage to 

establish closer affinity with Thorin. However, the sampling locations of European Neanderthals 

within the mtDNA clade of Thorin, from Iberia (Gibraltar, Galeria de las Estatuas) and southern 

France to Poland (Stajnia) would support a broader distribution, and be consistent with a 

suggested radiation of Neanderthal populations ~105 ka. While it is commonly inferred that the 
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interactions between the first H. sapiens and the last Neanderthals may have played an important 

role in the latter’s extinction in Europe, the unexpected identification of an hitherto unrecognized 

late Neanderthal population reveals a much more complex population structure among late 

Neanderthals and raises new lines of questions to further explore their social or ethological 

organization, which potentially could have played an important role in their later extinction. 

Besides the lineage that is represented by Thorin, our demographic modeling provides indirect 

evidence of another deeply diverged “ghost” lineage present through the French Neanderthal Les 

Cottés. Our demographic modeling suggests that the introgressing lineage diverged some time 

after the Thorin lineage, closer to the divergence of Mezmaiskaya1 and the Siberian individual 

Chagyrskaya8 from the Altai region, with which Les Cottés also shares a closely related MT 

lineage. Whether this ghost lineage forms part of an as yet unknown further radiation of lineages 

after 100 ka but before the classical late Neanderthals remains unknown without a denser 

sampling of genomic data from around that time period. Our results nevertheless suggest a 

minimum of two distinct Neanderthal lineages present in Europe during the late Neanderthal 

period. In the absence of any detectable gene flow between Thorin and other Neanderthal 

lineages after its divergence, we conclude that Thorin represents a lineage that has stayed 

isolated for ~50 ka. Deep cultural and technical specificities distinguishing Rhône Valley late 

Mousterian industries have been long proposed18,19,53, underlining that from MIS 5 to 3 these 

French Mediterranean Neanderthal societies possessed a distinct technical background. These 

cultural traits distinguishing Neanderthal societies from neighboring regions can now be 

paralleled with deep genetic isolations among these societies. Our results thus also shed light 

onto the social organization of Neanderthals, suggesting that small isolated populations with 

limited, and potentially without, inter-group exchange as a possibly more general feature of 

Neanderthal social structure. 
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Figures 

 

 

Fig. 1. (A) Map showing geographic location, ages, and coverage group of Neanderthal fossils 
with genome-wide data used in this study. (B) 3D model of the disposition of the Thorin fossils 
during discovery. Stratigraphic (C) and plan (D) views through Mandrin showing Thorin’s 
discovery location. 
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Fig. 2. The Thorin Neanderthal. Top. View of the mandible in situ when found in September 
2019. Bottom. Virtual reconstruction of the jaw and dental elements of Thorin in tilted (upper 
left), anterior (upper right), and lateral (bottom right and left) views.
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Fig. 3. Bayesian modeling of Mandrin’s Post-Neronian II levels containing Thorin. Top. 
The PN2 phase of the Mandrin Bayesian model used to determine the age of Thorin. The direct 
ages on Thorin comprise an ESR age, a U-series age constrained as a minimum age and three 
pooled mean Hydroxyproline AMS ages). Outliers are included in the format 
[Outlier:posterior/prior]. The boundaries are cross-referenced to the main Bayesian model 
established for the site, and represent the start and end dates of the PN2. Bottom. Comparison of 
the Thorin modeled age against other ‘late’ Neanderthals. Calibrated likelihoods in blue 
represent AMS dates obtained using HYP protocols. ** indicates high or low autosomal 
coverage of the dated specimen. Other likelihoods in black represent dates obtained on bulk or 
ultrafiltered/purified collagen samples. Dates are after refs. 16 and 31-37.

of 
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Fig. 4. Genetic affinities of Thorin Neanderthal with respect to previously published 
archaic hominins. (A) Maximum likelihood tree of mitochondrial DNA sequences. (B) 
Neighbor joining tree of Y chromosome sequences. 
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Fig. 5. Genetic affinities of Thorin. (left) D-statistics of the form D(Altai Neanderthal, Vindija 
33.19; Neanderthal X, Mbuti), showing that all Eurasian Neandertal samples share more alleles 
with Vindija 33.19 than with the Altai Neandertal. Thorin shares relatively more alleles with 
Vindija 33.19 than early European Neanderthals of the putative first radiation (HST, Scladina, 
Estatuas pit 1 Layer 4), but less than the second radiation (Mezmaiskaya 1, Chagyrskaya 8). 
(right) D-statistics of the form D(Vindija 33.19, Thorin; Neanderthal X, Mbuti), showing that  
Neanderthals from Europe, the Caucasus, and Siberia younger than 80 ka share more alleles with 
Vindija 33.19 than with Thorin. The exception is the Gibraltar Neanderthal sample (FQ), which 

shows increased affinity with Thorin. Error bars indicate 3 ✕ standard error (|Z| = 3).
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Fig. 6. Demographic history of the Thorin lineage. (A) Best-fitting demographic model 
relating Thorin to other Neanderthal and Denisovan genomes. Blue branches show point 
estimates, whereas gray transparent branches indicate estimates obtained using 100 
nonparametric bootstrap replicates. (B) Point estimates (dashed line) and density of 100 
parametric bootstrap replicates for divergence time parameters of Thorin, Mezmaiskaya 1 and 
Chagyrskaya 8 Neanderthal genomes from the late European Neanderthal Vindija 33.19. 
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Fig. 7. Runs of homozygosity in Neanderthals. Bar plot showing cumulative total length of 

ROHs ≥ 5Mb in Thorin and other Neanderthal genomes with average genomic coverage

≥ 1.5X. ROH length classes are distinguished by bar colors, with total length in each 

class indicated. 
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